
International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Prefetching Algorithm for Layered Storage
Mr. Shivakash Sahu, Mrs. Roshni Dubey

Abstract: The goal is to motivate on challenging the immediate character of the currently used replacement algorithm, Least Recently

Used. Furthermore, achievements in former researches provide the motivation for replacing the algorithm with a proactive one. The

concept is called prefetching, meaning that the algorithm fetches files to store on primary storage before (therefore ‘pre-’) a user has

requested them.

Here first we start with LRU and then by challenging the Least Recently Used algorithm to be used in the current situation. Subsequently,

related literature is used to motivate the research towards a prefetching algorithm based on data mining results. Furthermore, it states what

this research contributes to former researches. Then we introduce the research questions. Afterwards description of which methodologies

are used in order to answer these research questions.

1 LRU-K

Here we are talking about a self-dependent page-
replacement algorithm which has been derived from classical
Least Recently Used (LRU). It was projected for management
of buffer areas in database management systems. Here both
regency and frequency information are integrated to make
replacement decisions. In this algorithm the page is dropped
from the buffer which from a long time has not been
accessed, and on requirement of a new buffer, it limits itself
to only the time of the last reference. Particularly, distinguish
between often and least referenced pages in case of LRU is
not well, until and unless a lot of resources of the system has
been wasted in keeping of infrequently referenced pages in
the buffer for an extensive period. Best performance of LRU-
K algorithm can be proved among all replacement
algorithms that are solely based on stochastic information
about past references.

For classical LRU pages with the best estimate for inter-
arrival time i.e. with the shortest such intervals are the ones
kept in the buffer. In case of LRU-K tracking is done of the
times of the last K references to popular database pages, and
by usage of this information the inter-arrival time of such
references on a page-by-page basis can be estimated.

A set of disk pages has been given, denoted by the set of
positive integers N = {1, 2, …, n} and that a series of
references to the pages specified by the reference string: r1,
r2,…, ri,… of the database system under study, where rt = p(
p N) means that rt is a reference to disk page p. Clearly,
each disk page p has an expected reference inter-arrival time,
which is the time between successive occurrences of p in the
reference string. The system then tries keeping in memory
buffers the pages with the shortest access inter-arrival times,
or equivalently the greatest probability of reference. The
classical LRU algorithm takes an arithmetical approach, of
keeping in memory the pages that seem to have the shortest
inter-arrival time.

In case of LRU-K Algorithm a page replacement policy
works, when a buffer slot is needed for a new page from
disk, it says the page p to be dropped is the one whose
Backward K-distance, bt (p, K), is the maximum of all pages
in buffer. Given a reference string known up to time t, r1,
r2,…, rt _ , the Backward K-distance bt (p, K) is defined as the
distance backward to the Kth most recent reference to the
page p :

bt (p, K) =

Ambiguity occurs when more than one page has bt (p, K)
= ∞. Then, a supplementary policy, like classic LRU, helps in
replacement of victim among the pages with infinite
Backward K-distance selection.

Above figure depicts a simplified example of LRU-3 for a
sequence of accesses to pages p1, p2,…, pn. In case of an
incoming request for a page p5 that is absent and at the same
time buffer is full, from the point of the new access based on
the backward K-distance a victim is chosen. In above
example, both p3 and p4 have the backward K-distance of
infinity, so a secondary policy is required for tie breaking.

————————————————

 Mr. Shivakash Sahu is currently pursuing masters degree program in
engineering in Shri Ram Institute of Technology, Jabalpur, India.

 Mrs Roshni Dubey is currently working in Shri Ram Institute of
Technology, Jabalpur, India.

bt=(p4,3)=∞

bt=(p3,3)=∞

bt=(p2,3)=∞

bt=(p1,3)=∞

p3 p2 p1p1 p4 p2 p1 p2 p1 p3 p5

reference sequence

x, if rt-x has the value p and

there have been exactly K -1

other values i with t -x < i ≤ t ,

where ri =p .

∞, if p doesn’t appear at least

K times in r1, r2,..,rt

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

LRU-K accesses the history of each page to better
distinguish pages that have to be kept in the cache. This is
based on the hypothesis that the reference string is a
sequence of random accesses with special distribution, and
each disk page p has a well defined chance, βp, should be the
next referenced page by the system. If access patterns are
changed it may also change the page reference probabilities,
but the probabilities βp, have comparatively long periods of
stable values, and on top of that assume to be independent of
t. From the above discussion of LRU-K, it’s conjecturable that
for K > 2, the LRU-K algorithm shall somewhat provide an
improved performance over Classical LRU for stable
patterns of access, however is less receptive to changes in
access patterns.

Especially in cases where K ≥ 2, careful consideration is
required for ensuring proper caching behavior. The first one,
Early Page Replacement, arose in conditions where a page
that has been recently read into memory buffer and is not
preserved in the buffer because of standard LRU-K criteria,
for example, because the page has a bt (p,K) value of infinity.
We will surely drop this page from the cache relatively more
quickly, to save memory resources for more worthy disk
pages. Though, a page that is not normally popular shortly
after being referenced for the first time, may still experience a
burst of linked references. This issue is addressed with a
Correlation Time-Out parameter in LRU-K Algorithm, so
that a page is not dropped immediately after its first
reference, and is kept around for a Correlated Reference
Period for elimination of the likelihood of a dependent
follow-up reference.

The second feature is to preserve history information of
references for objects that are not currently present in the
cache. This is referred to as the Page Reference Retained
Information Problem. The LRU-K Algorithm addresses this
problem with a Retained Information Period parameter so
that after most recent access the system maintains history
information about any object for that period. The possibility
of repeatedly referencing a page is removed as soon as it is
evicted and no record of prior references are kept and is
dropped because each time the backward K-distance is
estimated as infinity.

2 CHALLENGING THE LEAST RECENTLY USED

ALGORITHM

Time taken to access a data set that present on disk, when
compared to the time user takes to actually use the dataset is
negligible. But, in case of absence from the disk, it can take
up to multiple hours for reading the data from tape.

Hit rate can be used to measure the performance of a
layered storage environment. It is calculated by dividing the
number of accesses of files when they are present on primary
storage (disk) by the total amount of accesses. Presently used
replacement policy, the Least Recently Used (LRU)
algorithm, keeps most recently used files on disk and while
others on tape.

The system is different from active storage environments.

Besides, a user actively puts his data in passive working
storage (archive) or copies data from the passive to his active
storage environment. The difference between these storages
can be observed from what a user can do with the data: our
processing is executed from active storage. This situation is
known as ‘active archiving’ situation.

In ‘active archiving’, presumption is that just archived
files will not be used for a long period. As well, just de-
archived files are moved immediately to a user’s active
storage environment for working. Therefore, the same files
will perhaps not be accessed sooner. LRU algorithm being
chosen as replacement policy for deciding upon the content
of the disk does not align with the situation of ‘active
archiving’.

Also, the implemented algorithm must not constrain the
system heavily. That is, although an algorithm may
theoretically be far more optimal in terms of hit rate, it may
increase system overhead such that the overall performance
is decreased. Therefore, performance should be calculated in
algorithm overhead.

3 LITERATURE ON REPLACEMENT ALGORITHMS FOR

LAYERED STORAGE

The challenge to LRU algorithm as a replacement
algorithm has already been done before. The standard LRU
algorithm is static and the field of research is layered storage.
The same amount of files is considered by standard LRU for
migration. Though, this acts as a constraint in the system, as
the replacement algorithm takes a standard overhead cost
always. With the increase in traffic on the system the
response time gets constrained. That is why when more
traffic is there, the replacement algorithm must be lowered in
activity. The number of file replacements is considered as a
variable and are dependent on the traffic. The overhead of
the system decreases, due to this adaptation. A numerical,
theoretical simulation can be used to show the overhead of
the dynamic LRU can become overhead of the static LRU.
But it lacks that it does not test the assumptions in a real
situation. Moreover the sizes of the different storage layers
are not taken into account. Consequently the total system
will use more storage than the maximum capacity, if traffic is
heavy remains same for a long period. As well, only access
history can be used to predict file demand, but other factors
may be likely to predict file demand as well.

The LRU policy is also adapted in the field of Web Cache
Management, which specifies the web pages to be stored in
different layer of web-servers. All parts must pass the
primary storage to reach a user. This condition is,
comparable to a layered digital archive. The last access of a
file is under consideration in standard LRU and adds
components for former accesses. The strength of this
approach is that files are all considered as unique with
unique access statistics. On the other hand, this research still
lacks to incorporate other factors than access requests.

Prefetching is a pro-active replacement policy. Prefetching
means that the algorithm can determine to data to be

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

migrated from secondary to primary storage. Our focus is on
hierarchical storage models. The magnetism of files can be
determined by means of a genetic algorithm and establish a
fitness function with a regular update. 42% hit rate
performance improvement is achieved. Prefetching
algorithm can also be extended. Through mining web access
logs, a decision tree can be constructed and frequently
observed patterns of file accesses can be found. In
comparison to the LRU algorithm both the approaches
enhance the performance in terms of hit rate. Herewith, it
can be concluded that the ‘knowledge’ extracted from
historical access data changes over time. Certain web-pages
become unpopular, either for all or for one person.

It has already been proposed to use data mining for a
prefetching algorithm. Sequence miner for 2-sequences from
web log data is used. The result of the sequence miner is
knowledge in the form of rules of the format A B. The
probabilities of files to be accessed are calculated from these
rules. The files that are most likely to be accessed soon are
‘buffered’, which is similar to prefetching. The size of the
buffer can be adapted in case of heavy traffic, hence makes
the algorithm dynamic for traffic changes. However, traffic
can increase heavily due to a prefetching algorithm.
Therefore, argument remains for a trade-off between
prefetching and computing overhead.

Some researches successfully challenge the LRU
algorithm. Both general and access likelihoods due to
relations between files are considered. Yet lack of generalized
incorporation of this ‘knowledge’ by means of data
taxonomy is there.

4 CONTRIBUTION OF MY WORK

The previous researches show the probable
implementation of a prefetching algorithm based on data
mining results. But, as they focus on web-page Cache
Management, data taxonomy is not considered. Hence,
generalized data mining knowledge is not extracted.

Our area of focus uses the concept of pro-actively
prefetching data for digital archiving. Since layered storage is
used in these fields, comparison can be done in the
replacement algorithms. At the same time, digital archiving
can get benefit from research in Web Cache Management.
Furthermore LRU is not the most suitable replacement
algorithm. The relations should be extracted in a generalized
format since only a small percentage of an archive is de-
archived. That is why prefetching based concept on data
mining results is extended by generalization of extracted
knowledge. Generalization of data mining results concept
has not yet been implemented in a prefetching policy.
Particularly, generalization on spatial coordinates shall be
tested.

5 SOME RESEARCH QUESTION AND ANSWERS

Presented here are some research questions derived from
the former and current situation of research, which show the
probability of extracting knowledge from historical access

data through data mining. Data mining is powerful in case of
large databases. In addition, the knowledge is useful in
successfully pro-actively prefetching data to higher storage
layers, which can help in improving the hit rate of layered
storage systems.

Question 1. What are the appropriate data mining
techniques for extracting useful knowledge from historical
access data?

Data mining shows to be very useful in extracting
knowledge from very large databases as is in our case. There
are many areas of data mining for which definitions and
application exist. This goes in alignment with the number of
available techniques. Previous researches show different
techniques of their application, which indicates about choice
to be made.

Question 2. What knowledge can be extracted to be used
in a prefetching algorithm?

This question is required to answer the first research
question as input. To turn the process of data mining, the
experts from the data mining industry have developed a
common standard. Since the framework is based on results
of data mining experts so it will be followed closely. The
framework explains separate stages of a data mining process:
business understanding, data understanding, data
preparation, modeling, evaluation and deployment.

Question 3. Based on the results of the knowledge
extraction process, what does a prefetching algorithm look
like?

Input for the prefetching algorithm is generated from the
results of the data mining process. The LRU algorithm is
modeled, based on the results of the data mining process.
Reason to use same simulation tool for both algorithms is to
make comparison easy.

Question 4. What is the performance of the prefetching
algorithm compared to the currently used LRU algorithm?

Derived from the literature the performance comparison
between the two models is based on two elements:

1. the hit rate – is a predictor of the rate of the system that
constraints the user to wait for accessed files, which is useful
in improving the ratio.

2. algorithm overhead - Although the hit rate is of use, but
in case of too large algorithm it fails because the system may
be constrained in its primary activities.

REFERENCES

[1] J. Zhou, P. Martin, and H. Hassanein. QoS Differentiation in Switching-

based Web Caching. In Proc. of the 23rd IEEE International Performance,

Computing, and Communications Conference (IPCCC ’04), 453-460,

Phoenix, AZ. Apr 2004.

[2] Q. Zou, P. Martin and H. S. Hassanein. Transparent Distributed Web

Caching with Minimum Expected Response Time. In Proc. of the IEEE

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

International Performance, Computing, and Communications Conference

(IPCCC ’03), Phoenix, AZ. Apr 2003.

[3] W. Chen, P. Martin and H. S. Hassanein. Differentiated Caching of

Dynamic Content using Effective Page Classification. In Proc. of the 23rd

IEEE International Performance, Computing, and Communications

Conference (IPCCC ’04), 293-298, Phoenix, AZ. Apr 2004.

[4] Huang, Y.-F., Hsu, J.-M. Mining web-logs to improve hit ratios of

prefetching and caching. Knoledge-Based Systems, 2007

[5] Balamash, A., Krunz, M., Nain, P.,Performance analysis of a client side

caching/prefetching system for Web traffic. Computer Networks, 2007.

